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A Mathematical Investigation of the Induced Mutation Rate
which is Optimum for Genetic Improvement

Part I. Mutagenic Treatment of the Haploid: the Three-Locus Case*
BASIL DIAMANTIS

Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota (USA)

Summary. Even if there is a high ratio of unfavorable to favorable mutations, there is still a finite probability that
a favorable genotype will arise by mutation, if only favorable mutants happen to occur or if the effects of the favorable
ones outweigh the effects of the unfavorable ones. The object of this investigation was to determine the mutation
rate (termed the optimum mutation rate) that maximizes the probability of a favorable genotype. This was investi-
gated for a diploid plant with pollen treatment followed by self-fertilization to essential homozygosity.

The parameters considered are block (chromosome) number, number of loci per chromosome, ratio of favorable to
unfavorable mutants, and amount of recombination (¢). The exact ranges in the interval 0 < ¢ < 0.5 have been
obtained for the optimum mutation rate and the corresponding probability of obtaining an improved genotype.

In later publications the effects of seed treatment and of random mating before self-fertilization are considered. It
is found, and will be discussed in a later publication, that (1) seed treatment is better than pollen treatment, and (2)
if the number of loci is sufficiently large the optimum dosage of the mutagen may be so small as to make artificial

mutagenic treatment undesirable.

1. Introduction

It has been known since the third decade of this
century that irradiation increases mutation rate (Mul-
ler 1927, 1928; Goodspeed and Olson 1928; Stadler
1928, 1929; and others) and this is firmly established
by voluminous data accumulated since then. Ex-
perimental data also indicate that the frequency of
induced mutation depends on the total dose of mu-
tagen (Stadler 1930; Muller ef al. 1954; Newcombe
1955 ; Gustafsson 1963) and hence that within limits
mutation rates are subject to control.

Many investigators have been and are using muta-
genic agents to produce new alleles that are better
than the pre-existing ones so that superior genotypes
can be produced (Gustafsson 1947, 1963; Gregory
1955, 1956; Cooper and Gregory 1960; Gustafsson
et al. 1960; Gaul 1961, 1965; Tavcar 1965; Brock
1965 ; Frey 1965; Pfeifer 1965; Scossiroli 1965 ; and
many others).

In general, unfavorable mutants will greatly out-
number those that improve the performance, so it
is clear that a very high rate of mutation will produce
so many unfavorable mutants as to swamp the
smaller number of favorable ones. On the other hand,
too low a mutation rate will produce no mutants at
all in most trials. Clearly, there is an intermediate
mutation rate that is optimum in that it maximizes

s the probability of getting an 6verall improvement.

* This paper was supported in part by Grant Number
GM15422 from the National Institutes of Health. Paper
01565 from the Laboratory of Genetics, University of
Wisconsin-Madison.

The situation considered is that of a self-fertilizing
plant. Either seed or pollen is treated with a muta-
genic agent and the progeny are continuously self-
fertilized until essentially homozygous before testing.
The object is to determine the mutation rate that
maximizes the probability of obtaining an improved
line, either by obtaining only favorable mutations or
by having the ratio of favorable to unfavorable such
that the effect of the favorable ones outweighs the
effect of the harmful ones. A variation of the proce-
dure is to permit random mating for one or more ge-
nerations before starting self-fertilization.

In this paper I consider self-fertilization following
the treatment of pollen. Seed treatment and random
mating before self-fertilization are treated in a sub-
sequent paper. The parameters considered are the
number of blocks (chromosomes), the number of loci
per block, the amount of recombination, and the
ratio of favorable to unfavorable mutations.

For the purpose of this study the genotype is vi-
sualized as comprised of blocks (a block may be iden-
tified with a chromosome) that carry particulate
units of inheritance at specific loci. Let m be the
number of these blocks, # the number of loci per
block and ¢ the probability of genetic recombination
between adjacent loci. Further, for any locus, let 0
signify the allele present in the homozygous material
prior to mutagenic treatment, let 4 indicate any
mutant allele of 0 that increases the value of the total
genotype and let — represent any mutant allele of
0 that decreases the total value of the genotype. Let
P, be the rate at which the 0 allele mutates to a 4
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allele, p, be the rate at which the 0 allele mutates to a
— allele and #, be the probability of no mutation.
The three probabilities must add to unity.

Pr+ P2+ Do =1 (1)
Next let the total mutation rate be
p=2p "y P2 (2)
and the ratio of mutation rates to + and — alleles be
A
b 3)

Then, p,, p; and p, can be expressed in terms of p
and k or

— | — _t
=1t b=ty =l @)
There is ample experimental evidence that ¢, > $,,
i. e, thatk < , probably very considerably less than

one-half.

Two modes of classification of homozygous lines will
be employed that are based on the nature of genetic
blocks that make up the genotype. A third mode will
be considered in a later paper that is based on num-
bers of 0, 4 and — genes in the genotype. We shall
distinguish four types of genetic blocks as follows:

Type Number of -+, — and 0 alleles in the block

n(+) n(-—) 7(0)
a 1 0] n—1
b >1 0 n— n{+)
c >0 >1 n—n(+) —n{—)
d 0 0 n

1. For the first mode of classification of lines let m,
be the number of genetic blocks that are type a or
type b, m, be the number of blocks that are type c,
and my; = m — m, — m, be the number of blocks that
are type d. Then all the lines for which m, and i, are
the same comprise a class of lines and the probability
of a line belonging to such a class will be designated
w (p; ¢, my, My, M, %),

2. For the second mode of classification let m, be the
number of genetic blocks of type a4 and m, and
mg = m — niy, — my be as defined for the first mode.
* The probability of aline belonging to a specified class
of lines will be designated w (p; ¢, m,, my, m, %n).

When both 4 and — alleles are present in the
genotype of a line, that genotype may or may not be
superior .to the original genotype (in which there are
only O alleles) depending on whether the sum of
effects of all 4 alleles is greater in absolute magnitude
than the sum of effects of the — alleles present. Thus
the only classes of lines of which all lines are certainly
superior are those for which m, = 0. For this reason
these classes will receive special attention in what
follows.

2. Derivations

With respect to a specific block, the population of
diploid genotypes that are carried by plants arising

immediately from the fertilization of untreated
ovules by the treated pollen, will be referred to as the
“imitial”’ population.

All that follows is based on the assumptions
(a) Genetic segregation between blocks is indepen-
dent.

(b) The mutational events are independent between
loci so that their joint probabilities are the pro-
ducts of their absolute probabilities.

(c) The mutation rates, i. e., the $,’s are equal for all
loci and also the p,’s; and the py’s.

(d) Changes in the amount of radiation or other mu-
tagens cause proportional changes in p, and #, so
that 21

2

(e) Mutation has no effect on fitness, i.e.,' all indi-
viduals carrying the treated genetic material have
equal reproductive fitness.

(f) The recombination fractions for all adjacent pairs
of loci and all genetic blocks are equal, i.e.,
¢Gi=cforalls,j;0=1,...,mi=1...,n—1
(m and »n are as defined in the introduction and
genetic interference is absent).

= k where % is a positive constant.

On the basis of assumption (a) and the types of
genetic blocks defined in the introduction,
mode 1:
w(p;c, My, Wy, M, N) =
m!
- mylmy! (m — my — my)!

g b= (5)
and mode 2:
o (p;c,my, My, M, 0y =

m! My 1— My
:ml!mzl(m_m1"m2)'tzhg im0

where, in homozygous lines obtained by continuous
self-fertilization,

z, 1is the probability that any specific genetic block
willbeoftypeaor b, i. e., that of # loci one or more
will be homozygous for a -+ allele and the re-
mainder for O alleles,

g, is the probability that any specific genetic block
will be of type ¢, i. e., that of # loci one or more
will be homozygous for a — allele,

is the probability that any specific genetic block
will be of type 4, 1. e., that all # loci will be homo-
zygous for 0 alleles, and #, is the probability that
any specific genetic block will be of type a, i. e.,
that of # loci one will be homozygous for a +
allele and # — 1 homozygous for 0 alleles.

The practical use of-equations (5) and (6) depends
on finding explicit expressions for z,, g,, #, and tn.
Let the “initial” population of the diploid genotypes
which may be carried by any one block be denoted by
Z,:1=1,...,3" where Z; is the i** genotype.

K2
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Let the population of homozygous genotypes that
may be carried in a block be designated by L; :j =
1, ..., 3" and the probability of the j** homozygous
genotype be P(L;). Theseindividual probabilities will
be obtained making use of the following

P(L)) = 2 P(Z;)P(L|Z)) (7)

where P(Z,) is the probability of a block having the
1** genotype in the “initial” population and P(L;/Z;)
is the probability that continuous self-fertilization
will produce homozygous genotype j given the inital
genotype, Z;. Summation of P(L;) for all genotypes
of a particular type, e.g.,

2 P(L;,) = 2 P(Z;) X P(L;,]Z,) (8)

then prO\:ides 2,8 h ::nd . 7
z=2P(L;,) + X P(Ly) =P, + P,
g=:_YP(L5c):7Pc
h=E P = 2,
t = ;\:P(Liu) =P

a

where L;,, L;;, L;, and L;; symbolize homozygous
genotypes of the four types explained in the intro-
duction. The four sums in (9) will be referred to
alternatively as P,:e¢=ua,...,d. For example
P, = X2 P(L;,).

j

In the remainder of this section the probabilities,
2, g, h and ¢, will be derived for various situations
specified in terms of #, ¢c. On the basis of these,
optimum mutation rates and other results of special
interest are obtained.

Number of loci: #n = 2
w (P c, mq, My, M, 2)

We proceed first to obtain explicit expressions for
29, 85 and h,. The first step is specification of the Z;
and P(Z,). Mutagenic treatment of pollen gives rise
to nine gametic possibilities (assumptions (b) and (c),
stated earlier). These with their probabilities are

IgI?éte ++ +0 +— 0+ 00— —+4+ —0 -—-—
proba-
bPiPo Pibe PiPo DY Pobe Drbe Pobe PR

bility 2

Fertilization of non-treated material (possessing
only 0 genes) by the treated pollen yields nine kinds
of genotypes, i.e., the populationZ; :2=1,...,32
(given in table 1) which have the same probability
distribution as that of the gametes above. Hence

PZ)=pip4pi "¢ x=0,1,2; y=0,1,2 (10)
x+y=<<2

where %, y and 2-x-y are, respectively, the numbers of
loci with 4, 0 and — genes in the haploid block
contributed to Z; by the treated pollen.
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Selfing begins on the Z; and after a large number of
generations of self-fertilization homozygous genotypes

of the following kinds (L;:j=1,,.., 3% are ob-
tained.

Genotype Symbol  Genotype Symbol  Genotype Symbol
++/++ Lib 0+/0+ Lua -+/-+ L
+0/+0 Lsa 00/00 L ~-0/-0 Lse
+—[+~ La¢ 0-/0- Lsc ——/-— Le¢

From equation (10) we have the P(Z;). In order to
obtain the P, by (9) we require the frequencies of the
homozygotes produced through selfing the heterozy-
gote ABJab. These frequencies are (Diamantis 1973)

genotype ABJ/AB AbjAb aBlaB abjab

£ ne 1 c c 1
TeQUeNCY S 3 2¢) 1+ 2¢ 1+ 2¢ 2(1+20)

On the basis of these, then, the conditional prob-
abilities appearing in table 1 are derived.

The last row of table 1 gives symbolically the fre-
quencies, P,. From these z,, g, and 4,, by relations
(9) and (4), are

__kp 2+ k&p
22_1+k(1_2(1+k)(1+20)) (11)
__? ?
g2—1+k<1—2(1+k)(1+20)) (12)
h‘2=1’_?5+r1pm (13)

where ¢ is the frequency of recombination between
the two loci and
Zy+ g+ hy = 1.

The optimum total mutation rate, denoted by
polc, my, my, m, 2), or simply by pg, (for the function w),
can be obtained as the value of  which maximizes (5).
The derivative

d
s w (p; c, my, my, m, n)
_ o ml R kT T oy dey,
T omy ) my! (m — my — my)| 2z, dp

my dgn
+ E%‘ +

(m — my — my) dhn

Fin ap
vanishes when
My 2 | My dgn | (0 — My — M) ARy
Zn dp  gn dp + Bn ap (14)

and one of the roots of (14) is optimum 4 in that it
maximizes w.

In practical breeding the optimum mutation rate,
pw, has utility only for the case m, = 0. This is
because nothing certain can be stated concerning the
relative magnitudes of effects of favorable and un-
favorable mutations. As a result a line cannot be
drawn between ‘‘superior’”’ and ‘“‘inferior” genotypes
when my 5% 0.
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Table 1.
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Population Z; when n = 2 loci per block, and the conditional probabilities of

the four types a, b, ¢, and d of homozygous lines, from which theiv absolute probabilities
P, ave obtained

P(LaelZj)*; e = a, b, ¢, d

i Z; P(Z)) Lap Lag Loc Log
2 1 2¢ 1
1 ++4/0  p} 20+20 1+ 2¢ 0 2(1 + 2¢)
1 1
2 -+0/00 Pibo 0 2 0 DY
c 1 1
3 +—/00 212 0 1+ 2¢ 2 2(1 + 2¢)
1 1
4 0-+/00 PiPo 0 > 0 >
00/00 3 0 0 1
1 1
6 0-— /00 Dol 0 0 > >
¢ 1 1
7 —+/00  pips 0 1+2¢ 2 2(1 + 20
1 1
8 —0/00 Do 0 0 > >
2 1+ 4c¢ 1
9  ——/jo 73 0 0 2(1 +20) 2(1 +20)
Total frequencies Z P(Ljp) 2 P(Lja) Z P(Lj,) 2 P(Lja)
1 H i )
* The subscript 2 in L,, stands for » = 2 loci per genetic block
That is, when m, £ 0, usually both favorable and and
unfavorable mutations are occurring. This will be P
advantageous in evolution or to the breeder only if — 2 + 27
the effect of favorable mutants outweighs that of the Then, substituting (17) for p in (11) and (13), the

unfavorable ones. This case will be discussed in a
later paper. For the present we shall consider only
the case where m, = 0.

1. When m, = 0 (i.e., no unfavorable mutations)
we get for two loci
. 2 — m'
w (B0, 0.0 2) = i

zm, h{m—m1 (,1 5)

and (14) becomes

PrapPPtapta=0 (16)
where
ay= — 2D oy + m (4 + 38)
4= 202 o B+ (14 B) (1 + 20)
4y — _2m (1 + k(1 + 20)°

wm (2 + k)
One of the roots of (16) gives the optimum py,
for (15), or

a2
pg} (C, 7n1’ m, 2) M —_

94 3

A= (- A (A'2+ (2o a%)s)—})

such that p, <1

o

=4 — (17)

with

w| -

maximum of (15) is
w (p°; ¢, my, 0, m, 2) =

ML (g (p8))™ (kg ().

= T (o — )] (18)
The graphs of (15) for m = 3, 10, 20, m; = 1 and
k = 0.10 are shown in Figs. 1, 2, and 3.

2. When m, = 0 and m—m, = 0 (i.e., at least one
favorable mutation in each block) then m = m, and
we have the special case of [5]

w=2"=u(p;c,m, 2)=

Rp (y (
(1 +k(1 2(1 )
by equation (11). Then
u(p;c,m,2) =0

4
dp
gives the optimum for the function «(p;c, m, 2), or
(8 +20

pulc, 2) = 2% for ¢ < v XU + ) (20)
and
pule, 2) =1 when ¢ > X _|_ Pk
Substituting (20) into (19) yields the maximum
w@sem2) = (Ga0n) e <sgrm @

Theovet. Appl. Genetics, Vol. 44, No. 1
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and

) _ (R4 44U+ k) e\, 1
M(?U,cjm,Z) —(mmc)) lfc__>_2 (1 +k).

The graphs of (19) for m = 2 and & = 0.05, 0.10
are shown in figs. 6 and 7.
o(p; ¢, my, my, m, 2)

The probabilities g, and h, are given above and #,
obtained using (9), (4) and table 1 is

1k+Pk (1 1 fzc)'

The sum of g,, 4, and £, is less than one.
The mutation rate that maximizes the function w

ly = (22)

is given by one of the solutions of Z—z = 0 and in par-

ticular by a solution of the following parallel of (14)

my) dhy
W—d—P +g—nd—17+——_ hn 2 EE_“ (23)

1. When m, = 0 we obtain the special case of

my dty | my dg, | (m — my —

m!

w (p; C, My, g, m, 2) = W

tm b (24)

and (23) becomes

PP+ ap? +ap +az =0 (25)
where
a; = — 2Dy 1 g m)
a =(-1—%C)(2m1+ m (14 2c))
a; = —%‘—(1 + 2¢)2.

The optimum p;, for (24) can be found if the coeffi-
cients 4;, a; and a3 are substituted, respectively, for
a,, a3 and a5 in (17). Then the maximum of @ can be
obtained by replacing p in (24) by pe.

2. When m, = 0 and m — m; = 0 then m = m,
and we have the special case of (6), (i.e., just one
favorable mutation in each block),

2 "
a):t;n=v(p;0;m12) :(1 +pk(1 _1 —fZC))

by equation {22). Then
Ed;v(;b;c, m,2) =0
gives the optimum mutation rate for the function
v(p;c,m, 2) or
py(c,2) = L E2E (27)

Substituting p, for p into (26) we obtain the ma-
ximum of v, or

v (p%; ¢, m, 2) =(

Bt + 20)\m
) (28)
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The graphs of (26) for m = 2 and % = 0.05, 0.10
are shown in figs. 8§ and 9.

Number of loci: # = 3
w(p;c, my, My, m,3)

With respect to a specific block, fertilization of
non-treated, 000/000, ovules by the treated pollen
gives rise to the intial population of diploid geno-
types Z; ;4 =1, ...,33with a probability distribu-
tion equal to that of the treated gametes which
entered the Z;, or

PZ)=pipsp3i* x=0,...,3;, y=0,...,3
r+vy<3 (29)

given explicitly in table 2. The exponents x, y and
3 — x — y are, respectively, the numbers of loci
with 4, 0 and — genes in the haploid block contri-
buted to Z; by the treated pollen.

The aggregate of homozygous genotypes L; :§ =
1,...,%3%1is as follows:

Genotype Sym- Genotype Sym- Genotype Sym-
bol bol bol
+++/+++ L,  0++/0++ Liop —++/-++ L
++0/++0 Ly  0+0/0+0 Ly —-+0/—+0 L,
+4+—/++- Lz, 0+-[0+— L —+-/-+- Lau,
+0+/+0+ Ly  00+/00+ Liza -0+/-0+  Lsg
+00/+00  L,, 000/000 Lisg -00/-00  Las,
+0-/+0~ Lg, 00—/00~ Lise -0-/-0- Lasc
+—-+/+-+ L;, 0-+/0-+ L ——+/-—+ Lasg
+-0/+-0 Lg, 0-0/0-0 Ly --0/--0 Lsg,
+-—/+-— Lgg 0--/0-— Ligg —-——/-~- La,

In order to derive the P, we require the frequencies
of the homozygotes produced by selfing from the
initial heterozygote A BD/abd. These are symbolized
as follows:

Genotype Probab. Genolype Pyobab.
ABD/ABD = aBD/aBD -
ABd[ABd =, aBdjaBd o
AbD]AbD 7y abD]abD g
Abd[Abd m abdjabd g

The frequencies ;, ¢ = 1, . . ., 8, may be obtained

from the frequencies of homozygotes bearing a two
locus genotype.
Considering pairs of loci

g+ Mg =Ty -y =y A+ =y g =

2{1 —2¢)
(30)
hence,
ﬂ2=ﬂ4=ﬂ5=7€7.
Also,
1
7y + 7y = Mg + Ay = — (31)
2(1 4+ 4¢c— 49

since the recombination fraction between loci a and d is
=10+ —2cc,=2¢c{1 —c).
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4¢3 —6¢2+2c+ 1
21+ 2¢) (1 +4c— 4c?)

—20c¢® + 14¢2 4+ 10¢c + 1
2{(1+2¢) (1 +4c — 4c?

3
9

— — — 000 i

27

P(Ljg)

z

X P (Lja)

Total frequencies

2 P(Lja)

2P (Lje)

* The subscript 3 in Ly, stands for number of loci # = 3 per genetic block.

37
Therefore
J'l3 = 7!6 .
Finally,
My 7y = 7y 7y = 1 5 (32)
Thence
7oy = g = 4¢3 — 62+ 2011

2(14+2¢)(1 +4c—4c¢?Y

from (30), (31) and (32)
c(1.—¢)

1+40—4¢c

from above and (30)

Ty = Ty == T = Tpq =

(3—2¢)c?
(1+2c(1 +4c—4c?
from above and (32)

7!3:7[6:

where
8
_Z'ni=2(nl+2n2+n3) =1
i=1

On the basis of these frequencies the conditional
probabilities P (L,,/Z;) are derived and table 2 is
constructed from which the P,= 3 P(L;) are
obtained. i

Then the probabilities in the w-function, by rela-
tions (4), (9), the frequencies =; above and the fact
that @, + 2 #, + =y = 1/2, are

_ k
BT o0R
2+A 0+ 4m) 2343k 4R m
xp(3 - P 2 )
(33)
o= aurn? 0 wan Tt 69
hh=1—3p+ UFAN o apr 3)

where 7, is one half of the frequency of the parental
type homozygotes obtained by selfing the triple
heterozygote, and

Zg -+ gt hy=1.

Next the optimum mutation rate pg(c, m,, mg, m, 3)
for the w-function may be found by solution of (14)
after substitution of z;, g and A, for z,, g, and ’,.

When m, = 0, m,; % m the equation to be solved
is of degree greater than four. General solutions for
such equations are not known but they can be solved
by various methods of successive approximation.

The graphs of the function w for n = 3; m; = 1;
my = 0; m =173, 10, 20; k= 0.0 are shown in
figs. 10, 11 and 12.
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Now, when m; = m we have the special case of
U)(j); ¢, My, My, M, 3)

w(p;c,m,3) = 2= ulp;c,m3) =

(- B
R
by equation (33). Then
u(p;c,m,3) =0
gives the optimum
Pe,3) =
ST s (24 B (4 + 4m) — (@))

(37)
where

=Q2+E(1+4mP —183 +3k+ k) m,.

Substitution of (37) into (36) gives the following
maximum of (36)

u(@®; ¢, m, 3) =

()32 — 2+ k) (1 + dmy) dy) )"'
(38)

R
::(((3+3k+k2nf

with

dy= Q2+ k21 +4m) —27(3 43k + )

w(p; c, my, my, m, 3)

The probabilities g5 and /g are given above, (34) and
(35), and #;; obtained by using (9), (4) and table 2, is

k
b=t 0 —20+4m)p+6mpY) (39)
with =; as in (34) and
ty + g3 + Ay <A

The mutation rate, pg(c, m,, m,, #, 3) that maxim-
izes w(p; ¢, m,, my, m,-3) is obtained by solution of
(23) after substitution of ¢, g; and &, for ¢, g,, and 4,.

When m, =0, m, # m the solution must be
obtained by successive approximation. The result
then can be substituted into the w-function to provide
the maximum of that function.

When m, = m the function @ becomes

w(psc,m 3) =i = olp;c,m 3) =
=(5al g B —20+4m)p+6m )"

ey
AN

by (39). Then

ap Vbiem3) =

yields the optimum mutation rate for the function

v(p; ¢, m,3), or

e 3) =g (1 + 4m — )7 (41)

where
=1+ 4m)— 222”1-

Substituting ps(c, 3) into (40), the maximum of v is
;¢,m, 3)

("
= (m%)w (2(ds)¥> — (1 + 4 my) 44))m (42)

dy=2(1 +4”1)2_‘82‘1‘”1

3. Applications and Discussion

In this section the behavior, with respect to the
parameters involved, of the functions derived in the
previous section will be examined. Specific values
will be assigned to these parameters so that their
effects may be studied on the optimum p° and its
corresponding maximum of the probability functions
considered. The parameter m, will invariably be
given the value zero.

w(p; ¢, my, 0, m, 2)

The w cases chosen here are the ones where m; = 1
and m = 3,10, 20. The reason for selecting these
particular values is that the breeder would like to
have a pure line whose m-block genome contains,
at the least, a single block with one or more + but
no—genes, the other m-1 blocks carrying unmutated
loci.

These functions have been plotted and their graphs
appear in fig. 1, 2 and 3. The number % is given the
value 0.10 and ¢ the values 0, 0.25, 0.5.

Fig. 1 shows, for example, that for an organism
whose genome is made up of three chromosomes,
each carrying two loci, the optimum mutation rate
is pu = 0.3 and with this rate there is a probability
between 0.03 and 0.04 of obtaining such an organism
with one chromosome having at least one favorable
mutation in the two homozygous loci and two chro-
mosomes with no mutations when the overall ratio
of favorable to unfavorable mutations is 0.1. In
fig. 3, representing a genome made up of 20 chro-
mosomes, the optimum mutation rate is pp =~ .05
and for this there is a probability between 0.0335
and 0.0339 of obtaining a plant with one chromosome
having at least one favorable mutation in the two
homozygous loci and nineteen chromosomes with no
mutations.

We observe in these graphs that as the chance for
genetic recombination increases, the maxima of w
ascend within all three values of m. However, as
m increases the maximum of w, w(p®), rises within
¢ = 0 and it decreases when ¢ = 0.25, 0.5. As for
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Fig. 1. The graph of the probability function w(p; ¢, m,, 0, m, %)
of obtaining a homozygous line with a genome consisting of
m = 3 blocks (each having # = 2 loci) of which m, = 1 block
has at least one favorable mutation and the remaining
m — m,; — my, = 2 blocks have no mutations; m, = 0, i.e.,
no block has unfavorable mutations. The overall ratio of
favorable to unfavorable mutations is k = 0.1. The three
curves pertain to the three values of the recombination fraction
¢ = 0.00, 0.25, 0.50
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Fig. 2. The graph of the probability function w(p; ¢, m,, 0, m, #)
of obtaining a homozygous line with a genome containing
m = 10 genetic blocks (each having # = 2 loci) of which
my = 1 block has at least one favorable mutation and the
remaining m — m,; — m, = 9 blocks have no mutations; my =
= 0, i.e.,, no block has unfavorable mutations. The overall
ratio of favorable to unfavorable mutations is 2 = 0.1
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Fig. 3. The graph of the probability function w(p; ¢, m,, 0, m, n)
of obtaining a homozygous line with a genome comprised of
m == 20 genetic blocks (each having # == 2 loci) of which
m; = 1 block has af least one favorable mutation and the
remaining m — m, — m, = 19 blocks have no mutations;
my = 0, i.e., no block has unfavorable mutations. The overall
ratio of favorable to unfavorable mutations is £ = 0.1

the optimum mutation rate, $y, it grows larger with ¢
for m = 3, 10 and within s = 20 it rises in the inter-
val 0 << ¢ << 0.25 but at ¢ = 0.5 it falls short of its
value at ¢ = 0.25. As m increases, however, p%
decreases within each ¢ by roughly two-thirds from
m = 3 tom = 10 and by about one-half from m = 10
tom = 20 for all c. These facts may also be observed
in table 4 at the value of 2 = 0.10.
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The explanation of the behavior, just described,
of p5 and w(p®) may be sought in the properties of
the components of the w-function.

We observe, from fig. 5, that h, = A(p; ¢, 1, 2) is
larger at smaller values of  and ¢ and its maximum
occurs at p = 0 for all ¢ (k(p; ¢, 1, 2) does not vanish
at p = 1 because of the presence of 0 genes coming
from the non-treated ova). Whereas, from fig. 4,
Zy = 2(p; ¢, 1, 2) is larger at larger values of p and ¢
so that its maximum with the corresponding optimum
P, increases with c.
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Fig. 4. The component 27 of the w-function where the number
of loci # = 2 per genetic block. In this example there is only
one block, m, = 1, which is of type a or b, i.e., bearing at least
one favorable mutation. The components of the function w
are the functions 27, gm: and hm—m—m: as defined in the
text but for this article blocks with unfavorable mutations
are not considered so that m, = 0 and g =1
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Fig. 5. The component hf —m, —m; of the w-function where the

number of loci » = 2 per genetic block. In this graph the
exponent of the function % is m — m; — my, = 1, i.e., there
is only one block of type d, which is homozygous for unmutated
genes. As m, = 0 the other component of w is the function z
represented in fig. 4

First, the function w(p; ¢, 1,0, 3, 2), fig. 1, is the
product of z,, the second power of 4, and a binomial
coefficient. This multiplication of the two opposing
components of w shifts the maximum w(p% and the
optimum pj, toward intermediate values, while the
influence on them of z, with respect to ¢ remains
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predominant. We think of $3, as the inverse function
of w(pY).

In the function w(p;c,1,0,10,2) fig.2, h, is
represented nine times as much as 2, so that its
influence on @ has been magnified:

(a) since h, is smaller, whereas 2, is larger, for
larger ¢, the values of w(#°) in the interval 0<{ ¢ < 0.5,
have been brought closer together than in the case
where m = 3; the maximum w(p®; ¢, 1, 0, 10, 2) has
been shifted toward the origin of the ordinate relative
to w(p® ¢, 1, 0,3, 2) when ¢ = 0.25, 0.50 and away
from it when ¢ = 0,

(b) this shift of w(p?) is associated with a simul-
taneous movement of py toward the origin of the
abscissa (we think of pj as the inverse function of
w(p9)), bringing py(c, 1, 0, 10, 2) much closer to this
point, for all values of ¢, than py(c, 1, 0,3, 2);

P4, 1, 0, 10, 2) = %p,‘z(c, 1,0,3,2).

Finally, in w(p; ¢, 1, 0, 20, 2) the influence of k,
has been further enhanced, being raised to the 19th
power, thereby narrowing more (than in the case
where m = 10) the range of w($%) in the interval
0 <C ¢ < 0.5. At the same time pg falls approximately
one-half of its value at m = 10, for all c.

Table 3 shows the widths of the ranges of p§ and
w(p?) in the interval 0 <C ¢ << 0.5.

Table 3. The widths of the ranges of the optimum mutation vate p, and its corvespond-
ing maximum probability w(p®) in the intevval o < ¢ < o.5forn = 2,k = 0.10 and
m = 3, 10, 20. Note the effect of m on these widths, i. e., on the vole linkage

purposes, neither pg nor w(p®) depend on ¢ when
m > 10.

The meaning of the previous findings is that as the
number of blocks bearing no mutations increases,
in a genome having only one block with -+ and no —
genes, we require a smaller total mutation rate py
to obtain the pertinent pure line with maximum
probability, and that $§ may actually be very small
when m is large and may be considered as independent
of c.

The joint effects of %, ¢ and m on py(c, 1, 0, m, 2)
and w(p°; ¢, 1, 0, m, 2) are shown in table 4. Domi-
nant features are the impact of m on p5 and & on
w(p) |

The special case of w where m, = m constitutes
the family of functions u(p; ¢, m, n). Some members
of this family for # = 2, m = 2 and & = 0.05, 0.10
appear in fig. 6 and 7.

It is clear from these graphs that as linkage becomes
tighter the probability of the desired pure lines becomes
smaller and it is the smallest when linkage is complete.
Conversely, the optimum pu(c, 2) and its associated
maximum %(p°; ¢, 2, 2) increase with ¢. As the
probability of mutation becomes larger and linkage
is looser there is more opportunity for recombination
and this leads to the upward trend in u(p°; ¢, 2, 2).
In the intervalmg c << %the values of this
maximum are associated in-
variably with one value of
the optimum #° ie., ps = 1.
This means that, for n = 2,

m 25(0.5, 1,0, m, 2) —pL(0, 1, 0, m, 2)

w(p?; 0.5, 1, 0, m, 2) —w(p®; 0, 1, 0, m, 2)

when genetic recombination is

3 0.02634 0.00444
10 0.00030 0.00090
20 0,000008* 0.00041

free or near to it, the total
mutation rate and correspon-
dingly the dose of the muta-
genic agent have to be the

* This entry is p§(0.25, 1, 0, 20, 2) — (0, 1, 0, 20, 2); the value of p2 at ¢ = 0.25 is the

largest of the three values of pY at ¢ = 0, 0.25, 0.5.

These differences fall off rapidly as m becomes
larger. When, say, m > 10 linkage is only very
slightly effective in pulling apart the curves of
w(p; ¢, 1,0,m,2); in other words, for all practical

largest in order to obtain the
desired pure lines, pertinent
to the w-function, with maxi-
mum probability.

The effects of the value % on p, and #{p°) may be
seen in table 5. Comparing the items in columns 2
and 11 of this table we note that for such an increase

Table 4. The joint effects of linkage, k and m on the optimum mulation vale pS, and its corvesponding maximum w(p®) of
the probability function w. Nole the impact of m on pS and of k on w(p®). Heven = 2, m; = 1, m, = 0

m . k = 0.01 k= 0.10 k= 0.50
pole,1,0,m,2) w(p® e, 1,0,m,2) P, 1,0,m,2) wpc 1,0,m 2 Pl 1,0,m 2) w(p; ¢ 1,0, m,2)

0.00 0.302947 0.003470 0.310030 0.032426 0.333333 0.125572
0.25 0.327372 0.003820 0.331560 0.035469 0.344406 0.134578
3 0.50 0.333654 0.003983 0.336370 0.036868 0.329694 0.138356
0.00 0.099451 0.003631 0.099940 0.033487 0.101430 0.124443
10 0.25 0.099909 0.003703 0.100210 0.034095 0.101104 0.126100
0.50 0.100014 0.003737 0.100240 0.034387 0.083320 0.124634
0.00 0.049945 0.003640 0.050057 0.033494 0.050392 0.123597
20 0.25 0.0499938 0.003673 0.050065 0.033771 0.047713 0.124177
0.50 0.0499943 0.003689 0.050059 0.033907 0.032235 0.114342
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Fig. 6. The special case of w where m; = m, m, = 0 and
m — my — my, = 0, constitutes the family of functions
u(p; ¢, m,n). Here n = 2, m = 2. Hence u(p; ¢, 2, 2) is the
probability of obtaining a homozygous line whose genome is
made up of m = 2 genetic blocks, each carrying » = 2 loci,
and where each block has at least one favorable and no un-
favorable mutations when the overall ratio of favorable to
unfavorable mutations is £ = 0.05. The nine curves refer to
the nine values of the recombination fraction shown in the
graph
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Fig. 7. The function u(p; ¢, 2, 2) of fig. 6 when the ratio of
favorable to unfavorable mutations is # = 0.10. The nine
curves refer to the nine values of ¢ shown in the graph

in k as indicated by the headings of these two columns,
the change in ) is relatively small. However, the
corresponding change in the maximum #%($°) is quite
substantial as a contrast of the values in columns 3

44

and 12 shows. The enhancing effect on the whole
function # of doubling %, may be seen by contrasting
fig. 6 and 7.

Finally, with respect to m, it is noted from equa-
tions (20) and (21) that the optimum #{ is independent
of m, whereas its associated maximum #(p°) decreases
rapidly, i.e., exponentially as # becomes larger. The
full meaning of this will be discussed in Part II of
this series of papers.

w(p; ¢, my, 0, m, 2)

Of this function only the special case where m; = m
will be examined. This is the function v(p; c, m, 2).
Curves of the latter from » = 2 appear in fig. §and 9
for values of &, 0.05 and 0.10 respectively.
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Fig. 8. The special case of w where m; = m, my == 0 and
m — my — my, = 0, constitutes the family of functions
v(p;c, m,n). Here n = 2, m = 2. Hence v(p; ¢, 2, 2) is the
probability of recovering a homozygous organism whose
genome is made up of m = 2 genetic blocks, each bearing
n = 2 loci, and where each block has just one favorable and no
unfavorable mutations when the overall ratio of favorable
to unfavorable mutations is £ = 0.05. The eight curves refer
to the eight values of the recombination fraction shown in the
graph

Comparing graphs in fig. 6 and 7 on one hand with
those of fig. 8 and 9 on the other it is noted that the
u-functions are (as they should be) slightly larger
than the v-functions. The recombination fraction ¢
affects the latter in much the same way as the former
and the remarks made above for #, p; and u(p?) with
respect to ¢ apply also to v, Py v(p®). However, the

Table 5. The effects of linkage and the value of k on the optimum mutation rate P and its corvesponding maximum u(p®)
of the probability function u (p;c,mm). Heve m = 2, n = 2

. k= 0.01 k = 0.05 k= 0.10 . k = 0.30 k = 0.50

23 u(p") P u(p?) P4 u(p) % u(p®) by u(p")
0.00 0.503 .0000062 0.512 .000149 0.524 .00057 0.00 0.565 .0043 0.600 .0100
0.01 0.513 .0000064 0.522 .000155 0.534 .00059  0.01 0.577 .0044 0.612 .0104
0.10 0.603 .0000089 0.615 .000214 0.629 .00082 0.10 0.678 .0061 0.720 .0144
0.20_ N 0.704 .0000121 0.717 .000291 0.733 .00111 782T1——+%~ 0.750 .0075 0.750 .0156
8+ A) 0.750 .0000138 0.750 .000319 0.750 00116  0.20 0.791  .0083 0.840 .0196
0.30 0.804 .0000158 0.820 .000381 0.838 .00145  0.30 0.904 .0109 0.960 .0256
0.401 0.905 .0000201 0.922 .000482 0.943 .00184 —2—(1‘1_’_?) 1.000 .0133 1.000 .0278
U R 1.000 .0000245 1.000 .000567 1.000 .00207 0.40 1.000 .0138 1.000 .0320
0.50 1.000 .0000248 1.000 .000594 .00226  0.50 .0166 .0378

1.000

1.000
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Fig. 9. The function (p; ¢, 2. 2) of fig. § when the ratio of favo-
rable to unfavorable mutations is k = 0,10. The eight curves
refer to the eight values of ¢ shown in the graph

families of functions # and v differ in the interval
—ZT1+—k) <c< %where $» equals to unity while $5
varies.

A more important difference between # and v is
that p; depends on & whereas ) does not (compare
formulae (20) with (27)). While, however, the opti-
mum mutation rate py is unaffected by %, the maxi-
mum »(p?), achieved by that rate, is larger when the
value of % is bigger as a contrast of fig. 8 and 9 shows.
The significance of this is that in order to obtain the
maximum of the #-function, the optimum dose of the
mutagen has to be increased as & becomes larger,
whereas with the v-function this dose need not be
altered if it happens that the value of % changes
{provided that in no way % enters the relationship
between optimum mutation rate and dose).

Looking at expressions (21) and (28) it can be
deduced that the pattern of change of v(p?) with
respect to k is similar to that of #(p® presented in
table 5. This may be verified by making a contrast
of the comparison between fig. 6 and 7 with the
comparison between fig. 8 and 9.

From equations {(27) and (28} it is noted that (as
with the function #) the maximum v(p?) decreases
exponentially as s increases while the optimum 43
is independent of .

w(p;c, my, 0, m, 3)

The graphical method was employed to obtain the
optimum pg(c, m,, 0, m, 3) and the associated maxi-
mum w(p°; ¢, my, 0, m, 3), shown in table 6, for the
functions represented in fig. 10, 11 and 12. We are
dealing with w(p;¢, 1,0, m,3) for 2= 010 and
m = 3%, 10, 20, that is, with the same functions as in
the case where » was equal to 2.

Irom table 6 it is noted that the effects of changing
¢ within each m and of altering » within each ¢ on
pulc, 1,0, m,3) and on w(p®; ¢, 1, 0, m, 3) are almost
the same as on pg(c, 1,0,m, 2) and on w(p°; ¢, 1,0,m, 2)
discussed above. Since the curvesin fig. 10, 11 and 12
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Fig. 10. The graph of the probability function w(p; ¢, m,, 0,
m, n) of obtaining a homozygous line where each genetic
block has #» = 3 loci but otherwise is the same as in fig. 1
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Fig. 11. The graph of the probability function w(p; ¢, m,, 0,
m, n) of obtaining a homozygous line where each genetic block
has # = 3 loci but otherwise it is the same as in fig. 2
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Fig, 12. The graph of the probability function =({p; ¢, m, 0,
m, n) of obtaining a homozygous line where each genetic block
has # = 3 loci but otherwise it is the same as in fig. 3

Table 6. The effects of linkage and of m on the optimum

mulation rvate pO and its covvesponding maximum w(p®)

of the probability function w. Nole the impact of m on $3,

as in the case n = 2 (lable 4). Heve k = 0.10, n = 3,
My =1, WMy = 0

" c pilc. 1, 0,m, 3) w(p%; ¢, 1,0, m, 3)
0.00 0.2040 0.0306
3 0.25 0.2230 0.0345
0.50 0.2250 0.0358
0.00 0.0667 0.0330
10 0.25 0.0669 0.0338
0.50 0.0669 0.0341
0.00 0.0334 0.0332
20 0.25 0.0334 0.0336
0.50 0.0334 0.0338

Thevalues of p9 and w(p®) are rounded to the 4th decimal place.
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of w(p;c, 1,0, m,3) result from multiplying 2z, =
= z2(p; ¢, 1, 3) with powers of hy = h(p; ¢, 1,3) and
a binomial coefficient, the effects of ¢ and m on py,
and w(p®) for n = 3, may be explained along the same
lines as for the function w(p; ¢, 1, 0, m, 2), withn = 2,
outlined above.

The effect of the change in m on the widths of the
ranges of peic, 1, 0, m, 3) and »(p°; ¢, 1, 0, m, 3), in
the interval 0 <C ¢ <€ 0.5, is seen from table 7 to be
much the same as in the case where # = 2 described
above. However, within each m there is a widening
of the range of w(p® when » goes from 2 to 3, as
a comparison of tables3 and 7 shows, which is
contrary to the behavior of #(p?) and v(p° whose
ranges, in the interval 0 < ¢ <C 0.5, become narrower
as n increases (compare ranges from table 5 with
those from table 8 of #(p?) for each k). This widening
of the range of w(p?) does not necessarily imply
a consistent upward trend of the width of that range
as » increases beyond 3.

Table 7. The widths of the ranges of the optimum multation
rate pS and its covvesponding maximum w(p®) in the inter-
val 0 <c¢ < 0.5 for n =3, k= o0.10 and m = 3, 10,20.
Note the effect of m on these widths, i.e. onthevole of linkage

w(p%; 0.5, 1, 0, m, 3)—
—w(p%; 0,1, 0,m, 3)

$%(0.5,1, 0, m, 3)—
—$2(0, 1,0, m, 3)

each m. (This figure is obtained by subtracting the
entries of the 3™ column of table 6 from the cor-
responding entries of the 5% column of table 4,
dividing these differences by the entries of the §th
column of table 4, and averaging over all ¢ for each m.)
This is a substantial decrease and it might mean that
the total optimum mutation rate pu(c, 1, 0, m, #) is
indeed small even when the number of loci per genetic
block is not very large, say 200 . In fact it has been
found (and will be shown in Part II of this series)
that the optima p;, for the function # and p; for the
function v decrease as # increases beyond 3, in the
manner just suggested for py,.

The special case of w(p; ¢, m,, 0, m, 3) for which
my = m is the family of functions u(p; ¢, m, 3). It
should be noted, as in the case where-# = 2, that
the tighter the linkage the smaller the u-function
becomes, and thus its maximum, and also the cor-
responding optimum #°. This is shown, for different
values of %, in table 8 in which also the effect of the
value of % on py, and #(pY) is brought out. A contrast
of corresponding entries of columns 2 and 10 of
table 8 shows that, for the increase in % indicated by
the difference of the values at the headings of these
columns, the differences in p,, relative to its values at
k = 0.01, are rather small while the relative differ-
ences in u(p), i.e., those between corresponding items

3 0.0210 0.0052 of columns 3 and 11, relative to the entries of column
10 0.0003 0.0012 3, are much larger. As pointed out earlier this is also
20 0.00001* 0.00054 the case when # = 2.

* This entry is p3(0.25, 1, 0, 20, 3) —$(0, 1, 0, 20, 3); when
m = 20, p§ has thelargest value at ¢ = 0.25, the other p3 values
considered are at ¢ = 0 and ¢ = 0.5.

The effects of increasing # from # =2 to n =3
on pylc, 1,0, m, n,) and w($°; ¢, 1, 0, m, n) will now
be considered.

A comparison of graphs in fig. 10, 11 and 12 with
those in fig. 1, 2, and 3, respectively, reveals that this
increase in the value of # has moved p, and also w(p°)
toward the origin of the co-ordinate axes, except that
w(p®) has moved away from this point at ¢ = 0 and
m = 10, 20; the shift of p;, toward the origin of the
abscissa being greater relative to that of w(p?) along
the ordinate. This decrease in pg, relative to its value
at n = 2, is on the average approximately 0.33 for

Now, for any specific value of ¢ and % the effect
on p, and on #(p®) of increasing # from # = 2 to
# = 3 may be brought out by comparing tables 5 and
8. This increase in # has resulted in a shift of the
maximum points toward the origin of the co-ordinate
axes, and the shift is greater toward the origin of the
abscissa than it is along the ordinate. This would
suggest that when # is large the optimum $° must
be indeed small. This in fact has been found to be so

for the functionsu(p; ¢ == 0, m, n) andu(p 1C= % , L, n) s

for any m and #, and will be shown in Part II of this
series.

Further, the effect of the increase of the number of
loci on the ranges of p; and of #($?), in the interval
0=<C¢=<C 0.5, may be examined. Suppose k& = 0.10,

Table 8. The effects of linkage and of the value of k on the optimum mutation rate S and its corvesponding maximum
u(p®) of the function u(p;c, m,n). Heve m = 2, n = 3

k = 0.50

k =7d.01 k = 0.0§ k = 0.0 k=025 ﬁmk = 0.3(7)"77”” h
c - ——

B v u(Y) pu () Py (P by u(?Y P u(p°) P3 u(p)
0.00 .335 .0000049 341 .000118 349 .00045 .371 .0024 378 .0034 .403 .0080
0.10 441 .0000080 449 .000193 460 .00073 .489 .0040 498 .0055 .531 L0131
0.20 .530 .0000113 .540 .000272 .553 .00104 .588 .0057 .599 .0078 .639 .0185
0.25 .566 .0000130 .577 .000312 .590 .00119  .628 .0065 .640 .0089 .683 L0211
0.30 .506  .0000145 .608 .000349 .622  .00133 .661 .0073 .674 .0100 .719 .0237
0.40 .641  .0000173 .654 .000416 .669 .00159 .711 .0087 724 .0119 772 .0282
0.50 .683 00179  .742 .0318

.756 .0135 .805

.0000196 .000470
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then when # == 2, from table 5, $; lies in the interval
0.52 <C p < 1.00 and the maximum of % in 0.00057 <<
< u(p®) < 0.00226, while for » = 3, from table 8,
we have 0.35 < p; << 0.70 and 0.00045 << #(p?) <<
< 0.00179. The widths of the ranges of #; and of
u(p°) decrease as # goes from 2 to 3; and this is true
for all .. However, this does not mean that the effect
of linkage on pi and u(p° diminishes as 7 becomes
larger. The differences between linkage and indepen-
dent recombination reflected in py and #($° remain
important when # increases. This will be shown in
Part II of this series.

w(p; ¢, my, 0, m, 3)

The special cases of this family, m, == m, constitute
the set of functions »(p; ¢, m, 3).

There is a close similarity between the functions
u(p; e, 2,3) and v(p; ¢, 2,3) and the remarks made
above for the u-function with respect to ¢ may be
extended to the function »(p; ¢, m, 3).

As for n, its effects on py and v(p®) are similar to
those on p;, and on #(#°) discussed above.

Further, we note that equation (42) depends on
k whereas (41) does not. The significance of this is
the same for the case where # = 2, described earlier.

Finally, the maximum v(p°; ¢, m, 3) decreases ex-
ponentially as m increases while the optimum p3{c, 3)
is independent of m (see expressions (42) and (41)).
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